Structure and cohomology of 3-Lie-Rinehart superalgebras
نویسندگان
چکیده
We introduce a concept of 3-Lie-Rinehart superalgebra and systematically describe cohomology complex by considering coefficient modules. Furthermore, we study the relationships between Lie-Rinehart its induced superalgebra. The deformations are considered via theory.
منابع مشابه
Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras
Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivari...
متن کاملComputation of Cohomology of Lie Superalgebras of Vector Fields
The cohomology of Lie (super)algebras has many important applications in mathematics and physics. It carries most fundamental (“topological”) information about algebra under consideration. At present, because of the need for very tedious algebraic computation, the explicitly computed cohomology for different classes of Lie (super)algebras is known only in a few cases. That is why application of...
متن کاملCohomology of Lie Superalgebras of Hamiltonian Vector Fields: Computer Analysis
In this paper we present the results of computation of cohomology for some Lie (super)algebras of Hamiltonian vector fields and related algebras. At present, the full cohomology rings for these algebras are not known even for the low dimensional vector fields. The partial “experimental” results may give some hints for solution of the whole problem. The computations have been carried out with th...
متن کاملTriple Cohomology of Lie–Rinehart Algebras and the Canonical Class of Associative Algebras
We introduce a bicomplex which computes the triple cohomology of Lie– Rinehart algebras. We prove that the triple cohomology is isomorphic to the Rinehart cohomology [13] provided the Lie–Rinehart algebra is projective over the corresponding commutative algebra. As an application we construct a canonical class in the third dimensional cohomology corresponding to an associative algebra.
متن کاملHom-Lie Superalgebras and Hom-Lie admissible Superalgebras
The purpose of this paper is to study Hom-Lie superalgebras, that is a superspace with a bracket for which the superJacobi identity is twisted by a homomorphism. This class is a particular case of Γ-graded quasi-Lie algebras introduced by Larsson and Silvestrov. In this paper, we characterize Hom-Lie admissible superalgebras and provide a construction theorem from which we derive a one paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2021
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2021.1931266